675 research outputs found

    A large-scale study of the random variability of a coding sequence: a study on the CFTR gene

    Get PDF
    Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (ngapproximate to100-150 genes). In the present investigation, a large random European population sample (average ngapproximate to1500) was studied for a single gene, the CFTR ( Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q>0.005), much lower than that of the synonymous ( S) substitutions, but they showed a similar rate of subpolymorphic (q<0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic

    Complete Ascertainment of Intragenic Copy Number Mutations (CNMs) in the CFTR Gene and its Implications for CNM Formation at Other Autosomal Loci

    Get PDF
    Over the last 20 years since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, more than 1,600 different putatively pathological CFTR mutations have been identified. Until now, however, copy number mutations (CNMs) involving the CFTR gene have not been methodically analyzed, resulting almost certainly in the under-ascertainment of CFTR gene duplications compared with deletions. Here, high-resolution array comparative genomic hybridization (averaging one interrogating probe every 95 bp) was used to analyze the entire length of the CFTR gene (189 kb) in 233 cystic fibrosis chromosomes lacking conventional mutations. We succeeded in identifying five duplication CNMs that would otherwise have been refractory to analysis. Based upon findings from this and other studies, we propose that deletion and duplication CNMs in the human autosomal genome are likely to be generated in the proportion of approximately 2-3:1. We further postulate that intragenic gene duplication CNMs in other disease loci may have been routinely underascertained. Finally, our analysis of +/-20 bp flanking each of the 40 CFTR breakpoints characterized at the DNA sequence level provide support for the emerging concept that non-B DNA conformations in combination with specific sequence motifs predispose to both recurring and nonrecurring genomic rearrangements. Hum Mutat 31:421-428, 2010. (C) 2010 Wiley-Liss, Inc

    Recent developments in genetics and medically assisted reproduction: from research to clinical applications

    Get PDF
    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved

    Self-reported dental hygiene, obesity, and systemic inflammation in a pediatric rural community cohort

    Get PDF
    Background A growing body of epidemiologic evidence links oral health, obesity, and cardiovascular health, though few studies have reported on these relationships in children. While underlying mechanisms are unclear, adult studies have suggested sub-acute systemic inflammation, also implicated in the etiology of both obesity and cardiovascular disease. This study investigated associations between self-reported dental hygiene, obesity, and systemic inflammation in children. Methods 128 children \u3c 19 years of age from rural counties in West Virginia participated in a community-based health screening that included anthropometric assessments, blood collection, and a questionnaire about dental hygiene and self-assessed oral health. Results Participants ranged from 3.0-18.7 years. Univariate analysis demonstrated an association between parent-reported dental hygiene, including frequency of preventive dental care and parent-assessed overall dental health, and markers of systemic inflammation but not obesity. In multivariable regression, parent-assessed overall dental health and obesity were independent predictors of systemic inflammation, after adjustment for age, gender, and parent education. Conclusions This is the first known study of the association between dental hygiene, obesity, and systemic inflammation in children. These results highlight the importance of preventive dental care in overall, systemic health in children and are consistent with previous reports in adults

    Proteomics approaches to fibrotic disorders

    Get PDF
    This review provides an introduction to mass spectrometry based proteomics and discusses several proteomics approaches that are relevant in understanding the pathophysiology of fibrotic disorders and the approaches that are frequently used in biomarker discovery

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore